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COMPARISON OF SEVERAL METHODS IK)ROBTAIMING THE TIME

RESFQNSE OF IJNFARSYW!EMSTOEI!I!HER AUNIT IMPULSEOR

ARBITRARY 13!WUTIROM FREQUEIWY-RESFWSE DATA

By Jsmes J. Donegan and Carl R. Hues

Several methods of obtaidng the time response of ltiear systems to
either a unit impulse or an arbitrary input from frequency-response data
are described and compsral.

Comparisons indicate that cdl the methcik give good accuracy when
applied to a second-order system; the main difference is the reqtied
computing time. Several of the methods when applied to higher order
systems require excessive compti~ the in order to obtati the ssme
degree of accuracy. The memods generally classified as imverse Laplace
trshsform methods were found to be most effective in det~ tie
response to a unit impulse from frequency-response data of higher order
systems.

Some discussion and.exsmples are given of the use of the methods
as fligbi+data-analysistechniques in predicting loads and motions of a
flexible aticraft on the basis of simple calculations when the aircraft
frequency response is lmown.

The frequency-response
found extensive a~lication

INCROIXX!!T!JDN

type of analysis used on linear systems has
=-the field-of aircraft stabili~ and in

the determination of overall dynamic characteristics of an aircraft. Ih
fact the current trend to perform amalysis on flight test data b frequency-
response form appears to be ga~ favcm especially h the case of flex-
ible aticraft. Considerable emphasis has, therefore, been given to methods
of determining t,hefrequency response of a system from transient responses.
A concise r&mme and comparison of methods for obtatiing the frequency
response from transient responses are presented in reference 1.

This paper briefly considers the next step in the process - the
converting of the Wormation contained in a frequency response to the

.. -— .—. .— —... ——.. —————-— —.. ——. -—- - -- —
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time plane in
purposes this

the form of the response to a unit impulse. For certain
conversion gives data tu more useful form. The response

of a Wear system to a unit impulse ~ be used in conjunction with
Duhamel’s (superposition)integral to determine (1) the aircraft transient
response to any @pe of inpti or (2) the tuput reqpired to cause any
requlmd aticraft taxmsient response.

It appears that methods of converting frequency-response data to
tiansient data present a flight-data-analysistechnique which permits
the prediction of aircraft motions adl loads for a flexible aircraft
without knowledge of the equations of motion reiating the input and
output. These methods also mass the need for computing transfer-
fuuction coefficients or stability derivatives h predicting these loads
and motions. Such predictions are important in anticipating the motions
and loads for more hazerdous atrcraft maneuvers. These methods are also
useful in pmlicting time responses of complicated lti.earsystems whose
frequency response is lmown.

The purpose of this report is to colJ_ectand briefly compare a few
of the methods now available for performing this operation. The methods
sre ccmrparedon the basis of accuracy, computing the requtred, and
applicabili@ of the method to higher order systems. Some extensions of
these methods are also given. With such information available, engineers
~ “thenselect the method which best fits theti needs.

F(t)

H(im)

H(s)

h(t)

i = c -1

j
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SYMEOLS

function of time

frequency response of a Syst=

transfer function (h terms of Laplace variable s)
rel.atm input and output

time response of a system to a unit impulse

index of summation

transfer coefficients defined by equation (8)

limits on summation of P-trsnsfmn

Mach number
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index of summation of P-transfomn

total nuniberof data potits used in solution of
equation (9)

limit of summation

pol.yn~ .Imnsfom operator

real.part of frequency response defined by equation (21)

ordtnate of pulse used to fit Re [H(imfl

Laphce variable, c + h

time, sec

output

lkplace trausfmm of x(t)

response of a system to an arbitrary input

smplitude ratio of fregyency response ‘

hdicates increment

tiput

the history of imput to a ltiear system ‘

pitch~ velocity, radians/see

value of thne, sec

phase angle, deg

phase angle between output x and input 5 of frequency
respmse; negative phase angles tndicate lag

cticular frequency, radians/see

dsmped natural frequency, radians/see

fundamental frequency, radians/see

-d natural frequency, radians/see
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Subscripts:

e elevator

i index of sumation indicat@g row

s index of summation indicating colmn

A tilde indicates polynomial transform of function; for example,
F(x) denotes polynominal transf-of F(t).

.!

. .

DESCRIPTION?AND DZXXJSSIONWMETHODS

In this section the meth@s for determining the response to a unit
impulse and the methods for obtaining therespo~eto srbitrary inputs
sre discussed.

The methods for obtaidng the time.response to a unit impulse from
frequency-response data fall into several basic categories which mqy be
generally classified as folluws:

(1) Ihverse L3place transform methods
(2) l?buriermethod
(3) Other methods

These methods are briefly outltied.to indicate the techniques involved.-
Tn order to describe the computations reqrdred and the accuracies
obtaind, each method is applied to the frequency-responsedata of fig--
ure 1 which defines a simple second-order syst,emdescribed by the
tmansfer-fuuction

:(s) = 1
S2+6S +10

(1)

It is usually intended that these methods be applied to higher order -
systems as will be shown later in the paper. No attempt is made to
repeat the development of the methods since this information ~ be
obtained from the references.

lhverse Iaplace Trsnsform Methcxls ~

Floyd‘s meth&. - !l?hemethdl developed by George F. Floyd and described
in detail h reference 2 is referred to as Floyd’s method. Floyd shows .

-- .-. .
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.

that the inverse Laplace tiansform h(t) of H(s) given by the
integral

J’
Ci-im

h(t) = & H(s)ets ds
C.iol

is for all positive values of timk equivalent to

(2)

(3)

This operation is bas~ on the assumptions-t H(s) may be written
as the ratio of two rational polynomials in s with real and constant.
coefficients, that lim H(s) = 0, and that H(s) has no poles in the

s+ @
right half of the s-plane or on the imaginary axis. The procedure
for perfomdng the tite~ation reqxlred by eqpation (3) is to plot
Re [H(h)] against m and then to approxhate -theexact shape with a
series of straight-line segments. The straight-line approximation is-
written as a sun of trapezoidal functions and eqution (3) is applied
to each of the trapezoids; the resulting time functions due to each
trapezoid are then added to obtati h(t).

A simple illustration is shown in sketch A:

%42
Sketch A

The time function associated with a @pical
cross-hatched section) may be expressed as

.

—-
%

trapezoid (as shown by the

(4)

.

.— .-. -——. ——.. — —--— — —— - --——-— -——— - -
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where
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%=

A2 =

A2 =

b general for n *pezoids the

%-%
2

time response is given by

(5)

Jn figure 2 the real part Re [H(im~ of the shple second-order

system camputed from figure 1 is shown plotted against a. The func-

tion h(t) is then easily evaluated since i%bles of ~ ~~ @v~ “

in reference 2. lh the upper psrt of figure 2, two strai@t-ltne fits

to the Re[H(imfl are shown, one a five-lfie fit and.the other an eleven-

line fit. For clarity, however, only the points and not the connecting
lines of the fit sre shown. b the lower pert of figure 2 the resulting
responses to a unit impulse computed by Floyd’s method are compared with
the exact response to a unit impulse. The accuracy of Floyd1s method.

depends on the number of lties used to fit the Re[H(iu~ and the loca-

tion of the cutoff frequency. The cutoff frequency is deftied as the

maxtium frequency at which the Re [H(imfl was fitted. It should be

noted that the limits of the definite titegral of equation (3) are O
to ~; however, h the practical case the Re[H(im~ is cut off at

some finite frequency. Ttd.serror is reflected at the low values of
the, especially at t = O. For a given nu?iberof lines, the accuracy
also depends on the judicious fit of the lines. .

Numerical-integrationmethod.- In order to use automatic computing
machines to perform the inverse Iaplace transform method, the necessary
operations indicated by e~tion (3) are perfomned h the follcndng
manuer ~ using a numerical-integrationmethod. For a given value of-

ttie t, the product curve Re [H(im~cos tm is evaluated over the u
range and integrated by numerical-integrationtechniques which give one

.

point on the time history of the response to a unit impulse. ~ repeating
the above computation for all the des~”ed values of time, the time response
can be obtained.
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lhis method was applied to the frequency-responsedata of figure 1.
The accuracy of the methcd is shown h figure 3. In the upper part of -

.
figure 3 the error due to the interval Am chosen for the computation
is shown by the coqmison between the cticle and square symbols. The
accuracy of the computation for the case of A = 1.0, as indicated by
the circle symbols, was not satisfactory beyond t = 2.0 seconds. This
result is to be ~ected since the interval A = 1.0 was too large to”
permit nmerical-integration methods to perform adequately the integra-
tion reqtied by equation (3).

Rectangular-pulse method.- A method for determhrhg the time response-
to a unit impulse from frequency-responsedata has recently been given
in reference 3. It is referred to herein as the rectmgular-pulse method.
The method involves the use of tables for the-plane values eqyivalen%
to unit rectangu@r pulses of the Re ~(im~ . The method requires fitting
the Re [H(imfl with a series of rectan@ar pulses or a staircase func-
tion so that the area under the curve is equal to the area of the pulse
in each case as is shown in sketch B:

IL

Re [H(im~ ~

.

.

Sketch B

This fitting although made visually should be made
ordinate of pulse 1 is designated as rl, of pulse

pulse n as rn, then the the response to a unit

to this .Re[H(im)l is given by

Carefuuy. E the
2 as r2, and of

impu&3e corresponding

(6)

The time functions ~(t), h2(*), hn (t) associated with each of

the rectangular pulses shown in sketch B are tabulated h reference 3.
These time functions are the inverse Fomier transforms of unit rectsn-
galar pulses of the Re [H(fifl.

The method was applied to the frequency-responsedata of figure 1.

The fitting of the staircase function to the Re[H(im)] is illustrated
in the upper pti of figure 4 snd the accuracy of the method is demon-
strated in the lower part of figure 4. f-lgdn the error in the computed

.

. ..- -...___ _ —— - ———- . ———. .—— ------- . ..
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res onse to the unit impulse at t = O is due to cutting

1?Re H(im)l at m = 20 radisms/sec end not integrating to
cated by equation (3).

Fourier Method - ‘

NACA l?N3701

off the

~ as indi-

Iburier response to unit impulse.- h reference 4, the response
a unit step input is derived by the Fourier method. Differentiating

to

this response gives an expression by which the response to a uuit imptie
~ be approxhated. I!& a 13near system characterized by its frequency

II
response with amplitude ratio ~ and phase angle #xa, this expression

b using equation (7)

x I~(a-l)uy
[

Cos (al - Uq+ (@x5},a..,%] “ (7)

the choice of the fundamental freqzency ~

.

.

determines the accuracy and length of the compu~tions. Since &e
accuracy is affected by ~ it has been found by experience that a

value .~ = ~ can be used as a god first estimate, where ~ is the

_ed ~tural frequency of the system. lhstead of ~, the value of
frequency at which the amplitude ratio peaks for a lightly damped system

.

~ be used. This value may be determined from the frequency response
of the system.

In table I the numerical compukation of h(t) for the system defined
by the frequency response of figure 1 is shown. lh this computation,
14 terms were carried in the expression for h(t), aud more accuracy may
be obtained, of course, ~ c- mme terms. The accuracy of the
metlxxlis shown h figure 5 kW the comparison between the computed and
exact response to the unit impulse.

Other Methods

Schumacher’smethod.- The method of reference
tion of transfer-functioncoefficients W assaing

5 permits the computa-
the shape of the -

trsnsfer function relating the input and-output &d then c-&ve fitting
this re~tion to the aircraft data h frequency-responseform. Once the
transfer-function coefficients are known, the system is completely
sFecified since the response to a unit imptie input or any other arbi-
trary input may then be compu$ed by the normal methods available for -,

— — —.
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solving differential equations. To illustrate the method a sample
computation is perfomed by using the system defined ti figure 1. !J!he
differential equation relating input 5 and ou~ti x for the fre-
qyency response shown in figure 1 is

.

I& applying the vector least-sqysres method of reference 5, the followdng
set of simultaneous equations is obtained:

N

- 2(4).
J=q 3

o

o

%

(X2E Id)j-q J

o (9)

where

●

These eqyations are then solved.simultaneouslyfor the transfer coeffi-
cients ~, K1, and ~. FYom

the response to a unit impulse

h(t) =

the form of e&ation (8), it is seen that

input is given by

‘3 -at
—e-
%

sin (.%t

the eqmtion

(lo)

.-. ..- —.-— .- —. —--—- .—— — .. -
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where
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.

A ssmple computation is shown in table II. Table II demonstrates
the computational steps involved in solving for the transfer coeffi-
Cients ~, K& and ~ for the system defined h figure 1. These

trsnsfer coefficients sre then substituted tito equation (10), and a
plot of this function is compared with the exact response of the system
to a unit impulse input h figure 6.

This method gave additional Wormstion when applied to the second-
order system since the transfer-$unction coefficients were determined in
the process of’the computation. A reasonable amount of computing time
was.required, and gocd accuracy was obtatied. The method, however,
requires pretious lmowledge of the form of the tiansform function
relating the input and output. Use of the curve-fitting method on the
higher order system did not prove too effective in determin~ all.the
parameters of the fl=ible system. U the form of the transfer function .
of the short periti is asapmed and fitted to that portion of the aticraft
frequency response associated wi- the short period then the method is
very effective h determtmhg the short-period transfer-function
coefficients.

I%ransf orm method.- The P-transform method, as described b
appendix A, d~ers from the other methods presented in this paper in
that the time response to a unit impulse can be determined dtiectly
from a known response to a known arbitrary @ti. The computation is
carried out entirely in the time domain, bypassing the frequency plane
entirely, and does not reqdre knowledge of the transfer function relating
the input and output. The method also represents a simple procedure for
using the response ,toa unit impulse and determidmg the response to a
giVeIlarbitrary *u%.

h exsmple of the methcd is shown in figure 7 in which the assumed
input 5(t) aud output x(t) are given from which the response to the
unit impulse h(t) is computed. A comparison of the computed response
to a unit @ulse and the exact response to a unit impulse is shown h
the lower part of figure 7.

L!/

. . — .— -. —
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Response to Arbitrary Inputs

The procedure for obtatiing the response to srbitiary inputs when
the response to the unit impulse is known is simply a matter of applying
Duhatuel’sinte~al to the response to the unit impulse and ttie history
of the srbitrary input. Jinumerical method of performing this operation
is shown in appendix A of reference 3.

The response to a unit step input msy be obtained by.numerically
titegrating the response to a unit impulse by using the integrating
matrix given in reference 3. Ih NJse manner, the response to a rsmp
input may be obtained by numerically integrating the response to a step
function. The’response to a trimgular ilq)l.ltiS obtained by SUJ3~OSi-
tion of the responses to various ramp inputs translated along the time
scale. .

1

The response to an arbitrary input may be ob@tied from the response
to a unit hpulse by the P-transform methcd by use of equation (A4) of
the appendix.

For dirgctly determining the time response to an arbitrsry input
from frequency-responsedata, the Fourier method is perhaps the best
known. me gen- met~ is ~icated in referties 6 and 7. ~ gener=,
an fipti which csn be expressed as a Fourier series CM be represented as

The response to the input given by egpation (1.1)of a linear system

II
whose amplitude ratio is ~ and phase angle is #x5 can be writtem as

F& a few specific shapes of inputs the values of ~, %; and

&
of equation (12) are known. Two wave forms frequently used axe the

sqme wave and trianguWc wave and exsmples of these are given.

- ..__ . .- . _. ._._ ___ .. - -- ——— . .. ----
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Response to a square wave.- As
series for a unit square-ware input

NACA TN 3701

.

hiilcated. in reference 4 the Fburier

5(t) may be writlxa as “

m

~(t)=L.+2~+ Sin(al - l)mft

2 ‘in=l ~-l
(u)

and the response to this unit step input of a

smplitude ratio is
II
~ and the phase angle is

ltnear system of which the

& ~ iS given by

The accuracy of the computation depends on the choice of the optimum
fmdmmtd 8qyare-wave frequency ~ and, as before, a suitable value is

us- q = ~ *== q is the lowest uMs3T@ednatural frequency of

the system.

Response to a trianguMr -wave input.- The specific form of the tiput
used h determining the time response to a trhngulsr -wave input is shown
h sketch c:

a(t) .

t\
\ /-

\ /
\’ /

+’il I
~Tf/2-----i

where T+ is the total

base in seconds, and 5

Without giving the
Eburier series for this

Sketch C

period of the input,

is the maximum vs,lue

Ti Is the length of the

of the tnput.

-ics2. development, representation of the
tr~-wave input is given by

.. -.—.
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where

*e

the

response to this

Hamplitude is ~

Here agdn

For a
structural
the choice

a rsdism/sec~=q

(15)

(16)

(17)

(18)

triangular-wave imput of a limxr system of which

and the phase angle is #x5 is then

IIx(t) = q c~-1 :
[

sin (al - l)oft +
= (a-l)af

%1-l)cly
+ (’4C2+J (19)

a suitable first approximation is ~ = ~ ~.

higher order system such as a ltiear system with several .
mcdes (as =icated by peaks in the amplitude-ratio curve),
of a fundamental frequency * becomes difYicul.tinasmuch as

odd multiples of mf must give

frequency of each of the higher

the natural frequency ~ and the

structural modes.

— . . . ..—. — -- .-— — —— —-—. — .—. — .—— —— . ... . .. . . .
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IX’ an ippti is nonperimlic and cannot be expanded tnto a Fourier
series dtiectly, the Fourier transfo?m of the tiput is used. The tables
of reference 3 may be used to determine numerically the Fourier transfom

.

of an arbitrary illpti. The proc&mre for computing the response of a
liuesr system to such an arbitrary input is briefly described as follows.
The Fourier transform of the output is formed by multipl@ng the Fourier
transfwm of the arbitrary tnpu% by the frequency response of the system,
which is the ratio of the Fourier trsnsforms of the output and input.
The tiverse Fourier trsnsfomn of this product is then taken which is the
time response of the system to the arbitrary inpti. The tables of refer-
ence 3 may also be used to perform the operation of the inverse Fourier
transfOrm.

A comparison of

COMPARISON AND USE OF METJ3)DS

Comparison of Methods

the methods as applied to the second-order system,
deftied by-the frequency response sho~ h figure 1, msy be made ~ -
not- the differences between the exact response to a unit impulse and
we response computed by each of the methods shown h figures 2 to 7.
lhxxi these figures there appesrs to be little difference between the
accmacy of any one method over the others, and in each case greater ,
accuracy = be obtained at the cost of more computation. For the
comparisons shown, however, the computing time required by the
rectanguhr-pulse method was significantly less thsn the time required
by the other methods. The Fouri= response to a unit ~ulse requtied
the most time. A listing of the methods in the order of the computing
time reqtied for the comparisons shown in figures 2 to 7 is given as
follows:

Rectanguhr pulse (ref. 3)
Schumacher’s (ref. 5)
Floyd’s (ref. 2)
Numerical titegration
l!burierresponse to a unit impulse

(All computations were performed on a desk-@pe computer.) -

A more severe test of the methods occurs when they =e applied to
linear systems of higher order. In order to demonstrate an application
of this @pe, a further comparison of the methods was made by applying
them to the system defined by the transfer function

$(s) = 1 100 225

S2 + 6S + 10 S2 + 0.4s + MO S2 + 0.2s + 225
(20) !
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The frequency response of this system is shown
part of the frequency response shown ti figure
figure 8 by using the relation

In figure 10 a comparison of the response to a

15

in figure 8. ~ere~
9was computed from

(a)

unit impulse comptied by
four ;f the method= is shown. For fioyd’s method a 27~line fit-to the-

Re rH(im)] shown in figure 9 was used”. For the rectangubr -pulse tithed,

the staircase fit to the Re[H(iu~ was made with the interval
Am = 1 radian/see, and for the numerical-integation method.jan interval ‘
Am = 0.5 radian~sec was used. The response of the linear system defined
by equation (20) to a tiiangulm input shown in figure 7 of reference 3 was
used to compute the points shown in figure 10 for the P-transform method.
A time interval of At = 0.1 second was used. The Fourier response to a
unit-impulse method ws foti to be impractical in this case because of the
large smount of comw-tion rewfied to obtain any accuracy. The accuracies
of each of the four methods illustrat~ appe= to be ewivalent.

Use

As afurther
system, a typical
wing airplane has
pitching-velocity
and the input was

of the Response to a IhiitI@mil.seas a

Flight-Data-AnalysisTechnique

comparison of the methods applied to a higher order
longitudinal maneuver (M = 0.82) for a flexible swept-
been analyzed. B this case the outpti was the
response 6 at the center of gravi@ of the ahplaue
the elevator sngle be. !T!heanalysis of this maneuver

serves to demonstrate the use of the method of obtaining the time response
of linear syst=s to a unit impulse from frequency-responsedata as a
flight-data-analysistechnique. The Fourier integrals of the output b
and input be were evaluat~ by using automatic computing ewpment and

the methods of titegration of product curves were used. The frequency
response obtained by dividing the Fourier integral & the ou ut by the

11Fourier tite~al of the tiput is shown in figure 11. The Re &$o)

computed from the frequency response of figure 11 is shown in figure 12.
Ih figure 1.3a comparison of the response to a uuit impulse coqputed by
thre~ of the methods is shown. For Floyd’s method a 37-line fit to the

[1Re &(im) shown in figure 12 was used and h~(t) was computed at enough

values of time to define adequately its shape. For the rectangular-

[1pulse method, the staircase fit to the Re $(im) was made with the

. —.. . - .—— —.— —— ---- .. .-—
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interval Am = 1 radian/see and for the numerical-integrationmethod;
animkrvalof Am= 0.5 radian~sec was used. Zn the case of the
mmwrical method, points are shown in figure 13 only at time interlnd.s
of 0.1 secoti h order to compsre accuracies. Several attempts were
made to compute the re@nse to the unit impulse by the P-transform
method using the original elevator input be(t) and output 6(t) ShOlal
in figure 14. The computations were made at time intervals ranging frcuu
0.02 second ~ At ~ 0.1 second but did not yield satisfactory accuracy.
It appesm that this inaccuracy is primsrily due to the sensitivi~ of
the method to small errors h the ftrst few terms of the response or
input.

The histcdies of the original elevator input ~e and-pitching-
velocity response 6 sre shown in figure 14. The elevatar input be

has also been used as a forcing function with the respons~ to a unit
tnpulse shown in figure 3.3to compute a time history of 0. The Duhsmel
method otilin= in appendix A of reference 3 with a t- interval of
0.05 sec~ was used fcm these calcuhtio~s. A comparison of this
computed e response with the original e response from a flight
test is shown fi the lower part of figure 14. This comparison shows the
amount of error tivolved h the total compwl=tionprocedure (transferr-
the data h time-history - to freqmcy-response form, then to the
response to a unit impulse, and flnalJy to the response to an srbitaxary
Input by means.of Duhemel’s Integral).

Another flight-test maneuver at M = O.&l was selected with the
other conditions approx=tely the same as the previous data in order
to see how well!.the response to a unit impulse comput@ fhom one msmeuver
could be used to predict the time response to en arbitrary input from a
different maneuver. The time histories of this maneuver are shown h fig-
ure 15. Also shown in the l~r part of figure 15 is the 6(t) response
calculated ~ application of Duhsmel’s inte~al to the response to a udit
impulse given in figure X3, and the elevata motion fbr the maneuver is
shown in the upp~ part of figure 15. A comparison of the computed smd
measured 6 response in the lower part of figure 15 gives some indication
of how well the motions of an aircraft can be pr~icted by a detailed
analysis of a single manemrer.

CONCL~~G

.

.

..

Several methods were compsred for obtaining the time response of
linear systems to either a unit impulse or arbitrary input from frequency-
response data. The methods were compared on the basis of accuracy, .
computdng time regyired} and applicabili~ to higher order linesr systems.

●
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!J5eapplication of
system indicated little

17

each of the methods to a simple second-order
difference between the accuracy of one method.

over the others, and, in gamral, it would be ~ected- that greater
accuracy could be obtained for each of the methods at the cost of more
computing time.

For higher order systems the three methods generally classified as
inverse Iaplace transform methods were most effective. T&y gave good
results for a moderate amount of computation. All of these methods are
based on the evaluation of the form of the inverse Iaplace tanxnsform
equation for positive values of the.

The methods generalJy classified as Foumier methods gave gocd
accuracy when applied to the second-order system. The accuracy of these
methods was found to depend on the choice of a fundsmntal frequency ~.

E& simple systems.a suitable value was found to be ~ = ~ where ~

is the lowest natural frequency. For high= order systems the choice
of q becomes more difficult. The Fourier response to a unit-~ulse
method was found to be impractical in the case of higher order systems
because of the large amount of computation reqtied to obtati accuracy.

.

.
Schumacher’s method gave additional information when applied to the

second-order system since the transfer-function coefficients were deter-
mined in the process of the cwqydation. This method required a reason-
able smount of computing time sad gave gocd accuracy. The method,
however, requires previous knowledge of the form of the transfer func-
tion relating the tiput and owtpu%. Use of the method on higher order
systems did not prove too effective in determing all the parameters of
the flexible system. A valuable use of the method was found in fitting
the lmown short-pericd transfer function to only the short-period portion
of the flexible-system frequency response to determine the short-period
transfer Coefficients.

The P-transfcn.mmethod is aiffer=t from the other methcds presented
in that the time response to a unit impulse can .bedetermined dtiectly
from a lmown response to a lmown arbitrary input. The computation is
carried out entirely in the time domain and bypasses the frequency plane
enttiel.y. The method also represents a sim@e procedure for using the
response to a unit impulse and determining the response to a given
arbitrary illpllt. The method, however, when applied to the flight data
of this paper aia not yield.satisfactory accuracy. It appears this is
primarlJy due to the sensitivim of the method to errors in the ffist
few terms of the response or input.

.

For all.the exsmples computed in this paper the rectangular-pulse
method of NACA Technical Note 3598 required less computing time, for the

a

——. . ..— -.. .—— ————- .—..
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ssme degree of accuracy, than any of the other methods used to obtain
the time response to a unit imp*e from frequency-responsedata.

When an aticraft frequency response is known, it afiesrs that these
methods ~ be used as a flight-data-analysistechnique which permits
prediction of aircraft motions and loads without knowledge of the equa-
tions of motion relat~ the inputs and outputs for a flexible aficraft.

Langley Aeronautical Laboratory,
National Advisory Commi.ee for Aeronautics,

~ey FieM, Va., March 16, 1956.

.

.

.
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APPENOIX A

P-TRANSEORM METEOD.

~ reference 8.a linear operational calculus is introduced which
appears to be well &lapted to the numerical analysis and qnrthesis of
linear systems. b this calculus a polynadml trsnsform or P-transform
of a function

where F(mt)
time interval

are the ordinates
A%. The inverse

F(t)

(Al)—----~
In=-If

of F(t) at integral multiples of a
P-transform is given by

= P-l[F(x] (A2)

The superposition
as Duhamel’s integral, relates the @put b(t), outmut x(t), ~

(convolutiona Faltung) integral, which is also known

response to a unit h@il.se h(t) (also called-a m&ory f&ction) of a
linear system end is given by

t
x(t) =

J
b(t) h(t-~)dT

.-m

Bubb (r&. 8) shows that the P-transform of equation (A5) is

(M)

%(X) = At 3(X) :(X) (A4)

Jn the synthesis problem the input b(t) and the output x(t) are
given and the response to the unit impulse h(t) is to be calculated.
This calculation is perfomed by forndng the P-transforms of X(4 and
5(x) and dividing by ordm polynomial division, %(x) by 8(x), to
get the P-transform of the response to the unit impulse

-—- ..———. -—— .— — — — — — — . —--- .—. .-. - .-
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.

= ~ hmx?
o

.

(A5) .

Ibr practiciilcases, however, the summation~s msde over a finite range
of t values. The inverse P-transform to h(x) then gives h(t), the
time response to the unit impulse. An example of this operation is shown
in table III; the known input 8(t) and output x(t) are shown in the
upper part of figure 7, and the compu%ed response to the unit impulse is
compsred with the analytic solution in the lower pert of figure 7.

This operatimal calculus is also well adapted to the solution of
the analysis problem in which the system response to a unit hpulse h(t)
end the input function b(t) axe known * the calculation of the system
output x(t) is desired. The P-transforms of h(t) and b(t) are
formed and multiplied together by ordhary polynomial multiplication as
indicated in eqpation (A4).“ Since this operation is just the inverse of
the operation shown h table III, an illustrative exsmple is not shown.
HS method has been found to be a simple and rapid means of applying
the Duhamel process.

.

The value of this operational calculus lies in the fact that all
computations remain h the time domain and no translation to the frequency
plane is reqtied. Also, only simple direct arithmetical procedures are
req~ed for solving practical problems.
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TAHLEI

NUMERICAL CAICUIATION ILLUSTRATING COMPUTATION Cll?THE

FUNCTION FOR THE RESFONSE !KlA UNIT IMPULSE

BY THE FOURIER METEOD

[ 1
*=; %=O.Q

n al -1

;
5
7
9

n

E
17
19
21
23
25
27

(2U - 1)%

0.64
1.92

;:$

7:&
8.32
9.60

10.89
3.2.16
13.45
14.72
16.00
17.30

II

x

E

o.og70
.0760
.c520
.0350
.0240
.0170
..o1.30
.0100
.0079
.0064
.0053
.0044
.0038
.0033

!4&
deg

-22
-61
-91
-m
-124
-133
-140
-145
-149
-152
-155
-157
-159
-160

h(t)
[

= 1+ o.og7 eos(o.~t - 22) + 0.076 COS(l.g2t - 61) i-

0.052 cos(3..2t - 91) + 0.035 cos(4.48t - m) +

0.024 cos(5.76t - 124) +0.017 cos(7.*t - 133) +

0.013 cos(8.32t - 140) +o.olocos(g.6t - 145) +

o.oo79cos(10.89t - 149) +0.0064 COS(12.16t - 152) +

0.0053 cos(13.45t - 155) +0.0044 cos(14.72t - 157) +

o.oo38cos(16t - 159) +0.0033 cos(17.3* -160fl
.

.

.
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“

raaia2/sec IIx @x&
ii deg

& = I;lCos #m ~“[: “45
o O.lom
1

0.10000
-3;.7

o

:% -63.4
.fx’fm
.03336 ::%%

;
4

J?355 -%.8
.dm4

.00310
-l&oo -Jw’77

-.05541

5 .0298 -u6.6 -JX334
-.B920

6 .0225
-.02664

-1.25.8
.O1’p

-.o1316 -.o1825

J
-1.32.9

.OI.39
-.0XL84

-u8.4 ---
-.o1o39 -.a)g23

7

K3

K1

%
. .

[

9.0 -o.g1324

II!%}{1
-0.15483IGJ1.97049

-o.g1324 o.15ml o K1 ~ o

-0.15483 0 0XW369 o.15201

ILj= 1.oo18

Kl = 6.01%5

Q = 10.00’72

men:
~(tl . ~ ,-at - -3.00gm

m
sti qt = 1.03e sin o.gj’5t

where

Kl
a=—

2
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Figure 3.- Time response to a unit impulse obtained from the numerical-
integration method compared to the exact values for the second-order
system.
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